Temperature and Precipitation

While temperatures were above-average throughout Ohio during the winter months, accumulated precipitation departures were much more variable. Average temperature departures in the state followed a general north-south gradient, with the northern half of Ohio seeing temperatures of around 5-7°F higher than normal and the southern half seeing departures of around 3-5°F higher than normal (Fig. 1a). Meanwhile, much of the state saw around 7.5-10 inches of accumulated precipitation over the quarter. In addition, portions of the southwest and east saw up to 10-12.5 inches of accumulated precipitation, while much of the northwest saw only 5-7.5 inches (Fig. 1b). Such variation led to the northwest corner and central belt of Ohio having 0-2 more inches of accumulated precipitation than normal, while the rest of the state recorded 0-2 less inches than normal (Fig. 1c). Looking at percentages, the positive departures seen in the northwest and central belt translate to 100-125% of normal, while the rest of the state stayed within 75-100% of normal (Fig. 1d).

Figure 1: Statewide departures from normal temperature (a) and accumulated precipitation (b) over the winter months at top, followed by statewide accumulated precipitation departures (c) and percent of normals for precipitation (d) at bottom. All data courtesy of the Midwestern Regional Climate Center (http://mrcc.purdue.edu).
Soil and Energy

Despite below-average precipitation accumulation over the winter season, generally moderate 3-month SPIs were observed across Ohio. While the state was split between SPI ranges of -1 to 0 and 0 to 1, both categories represent approximately moderate soil moisture levels (Fig. 2). A closer look at Ohio’s month-to-month soil moisture reveals that such near-normal SPIs are the result of a transition from significantly dry soil conditions at the end of 2023 to widespread high soil moisture in January, with a return to more moderate conditions later in February. Overall, the winter season hosted a wide variety of soil moisture trends in Ohio.

Meanwhile, the prevalence of above-normal temperatures throughout winter led to fewer Heating Degree Days (HDDs) than normal in all of Ohio’s climate divisions. Additionally, as expected, no Cooling Degree Days (CDDs) were recorded in the season (Fig. 3).
Looking Ahead

While the CPC’s 3-month outlooks show confidence in Ohio’s temperatures for the coming season, the same cannot be said for precipitation. Temperatures are forecast with moderate confidence to be above-normal for the entire state this spring, continuing the trend seen throughout winter (Fig. 4a). Meanwhile, most of Ohio has equal chances of above- or below-normal precipitation over the coming months, with the southernmost part of the state having a slightly higher chance of seeing above-normal precipitation (Fig. 4b). As Ohio moves into spring, and more specifically into the main growing season, above-average temperatures may result in fewer frost events and other adverse conditions for vegetation, potentially benefitting agricultural development in the season. With general uncertainty in the precipitation outlook, soil moisture trends cannot be determined at this time. As such, it is important to consult shorter-term forecasts as the season progresses. Additionally, the period of March through June marks the peak of tornado season in the United States. With multiple severe weather events having already occurred in Ohio, staying weather aware should be a main priority.

Note: these outlooks do not provide the quantity of above or below normal conditions, just the likelihood of occurrence (i.e., the probability).

Authors:

Jacob L. Fields
Atmospheric Sciences Undergraduate Student Assistant: Climate Services
Byrd Polar and Climate Research Center
The Ohio State University
fields.609@osu.edu

Geddy R. Davis
Meteorologist/Atmospheric Scientist
Program Coordinator: Climate Services
Byrd Polar and Climate Research Center
The Ohio State University
davis.5694@osu.edu

Aaron B. Wilson
State Climate Office of Ohio
Byrd Polar and Climate Research Center
OSU Extension
The Ohio State University
wilson.1010@osu.edu